Multiple Fourier series and lattice point problems

نویسندگان

چکیده

For the multiple Fourier series of periodization some radial functions on Rd, we investigate behavior spherical partial sum. We show Gibbs-Wilbraham phenomenon, Pinsky phenomenon and third for series, involving convergence properties them. The is closely related to lattice point problems, which a classical theme analytic number theory. also prove that, case two or three dimensions, problem equivalent problems in sense. In particular, at origin dimensions Hardy's conjecture Gauss's circle problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

Lebesgue Constants of Multiple Fourier Series

This is an attempt of a comprehensive treatment of the results concerning estimates of the L-norms of linear means of multiple Fourier series, the Lebesgue constants. Most of them are obtained by estimating the Fourier transform of a function generating such a method. Frequently the properties of the support of this function affects distinctive features in behavior of these norms. By this geome...

متن کامل

Rational Generating Functions for Lattice Point Problems

We prove that for any fixed d the generating function of the projection of the set of integer points in a rational d-dimensional polytope can be computed in polynomial time. As a corollary, we deduce that various interesting sets of lattice points, notably integer semigroups and (minimal) Hilbert bases of rational cones, have short rational generating functions provided certain parameters (the ...

متن کامل

Improved Convexity Cuts for Lattice Point Problems

The generalized lattice point (GLF) problem provides a formulation that accommodates a var.lety of discrete alternative problems. In this paper we show how to substantlrlly strengthen the convexity cuts for the GLF problem. The new cuts are based on the identification of "synthesized" lattice point conditions to replace those that ordinarily define the cut. The synthesized conditions give an al...

متن کامل

Multivariate modified Fourier series and application to boundary value problems

In this paper we analyse the approximation-theoretic properties of modified Fourier series in Cartesian product domains with coefficients from full and hyperbolic cross index sets. We show that the number of expansion coefficients may be reduced significantly whilst retaining comparable error estimates. In doing so we extend the univariate results of Iserles, Nørsett and S. Olver. We then demon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2022

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2021.109272